
OpenVDAP: An Open Vehicular Data Analytics
Platform for CAVs

Qingyang Zhang∗†, Yifan Wang∗‡, Xingzhou Zhang∗‡, Liangkai Liu∗, Xiaopei Wu∗, Weisong Shi∗ and Hong Zhong†
∗Department of Computer Science, Wayne State University, Detroit, MI, USA., 48202
†School of Computer Science and Technology, Anhui University, Hefei, China, 230601

‡Institute of Computing Technology, University of Chinese Academy of Sciences, Beijing, China, 100190
{qyzhang, liangkai, xiaopei.wu, weisong}@wayne.edu, {wangyifan2014, zhangxingzhou}@ict.ac.cn, zhongh@ahu.edu.cn

Abstract—In this paper, we envision the future connected and
autonomous vehicles (CAVs) as a sophisticated computer on
wheels, with substantial on-board sensors as data sources and
a variety of services 1 running on top to support autonomous
driving or other functions. In general, these services are com-
putationally expensive, especially for the machine learning based
applications (e.g., CNN-based object detection). Nevertheless, the
on-board computation unit possess limited compute resources,
raising a huge challenge to deploy these computation-intensive
services on the vehicle. On the contrary, the cloud-based architec-
ture conceptually with unconstrained resources suffers from unex-
pected extended latency that attributes to the large-scale Internet
data transmission; thus, adversely affecting the services’ real-
time performance, quality of services and user experiences. To
address this dilemma, inspired by the promising edge computing
paradigm, we propose to build an Open Vehicular Data Analytics
Platform (OpenVDAP) for CAVs, which is a full-stack edge based
platform including an on-board computing/communication unit,
an isolation-supported and security & privacy-preserved vehicle
operation system, an edge-aware application library, as well as
an optimal workload offloading and scheduling strategy, allowing
CAVs to dynamically detect each service’s status, computation
overhead and the optimal offloading destination so that each
service could be finished within an acceptable latency and
limited bandwidth consumption. Most importantly, contrast to
the proprietary platform, OpenVDAP is an open-source platform
that offers free APIs and real-field vehicle data to the researchers
and developers in the community, allowing them to deploy and
evaluate applications on the real environment.

Index Terms—edge computing; vehicular data analysis; ve-
hicular operating system; security & privacy; connected and
autonomous vehicles.

I. INTRODUCTION

As the rapid growth of technologies in communication,
chip processing, sensing and machine learning, vehicles are
becoming increasingly connected and automated [1]–[4]. A
typical connected and autonomous vehicle is often equipped
with a High Definition (HD) map that provides CAVs with
detailed road data, such as the road shoulders, and a plethora
of diverse sensors, e.g., light detection and ranging (LiDAR),
radio detection and ranging (radar) and camera, to monitor
the vehicle itself and its surroundings. According to Intel, a
CAV will generate 4TB of data per day in the near future [5].

1In this paper, we will use services and applications interchangeably to
represent the functions that are available on CAVs.

Although the sensor data can be transmitted to and processed
in a remote cloud, the bandwidth and latency challenges make
it impossible to ensure the real-time service (i.e., autonomous
driving) provides timely decision all the time. Thus, the com-
puting solution adopted by the autonomous driving platform
is to process data on the vehicles themselves.

Keeping data processing on the vehicle is effective in
offering real-time services. However, doing this will impose
a huge challenge on the on-board computing unit, especially
for the future CAVs that include more sensors and third-party
applications with varying degree of computation demands.
One naive solution is to add extra computing chips (e.g., GPU
or DSP) once the on-board compute resource is not sufficient
to support upper services. Since the powerful processors are
often power-hungry, usually on the order of hundreds of watts
for GPU, this method will cause processor overheating and a
concern for energy consumption.

Processed

data
Results

ResultsProcessed

data

Fig. 1. Data processing model in an edge-based solution.

In this paper, we envision the future CAVs as a sophis-
ticated computer on wheels with a variety of services, such
as advanced driver-assistant systems (ADAS), remote real-
time diagnostics, in-vehicle infotainment, other third-party
applications running on top. These applications could be the
embedded services on the vehicle or newly added third-party
services. Note that they are usually based on large-scale data
analytic, thus quite computation expensive. For the in-vehicle
only computing model, these applications need to contend
with each other for the limited on-board computing resources.
For instance, assume two latency-sensitive applications require



execution on the GPU at the same time. If there is only one
GPU on the vehicle, the second scheduled application might
not produce a timely decision.

The emerging edge computing [6], [7] (also referred to as
fog computing [8], cloudlet [9], [10]) is a novel networked
computing architecture which will deploy the compute, stor-
age, and communication resource at the network edge, en-
abling the latency-sensitive and confidentiality-aware applica-
tions to be performed in proximity of the data source, thus
removing extra data transmission time and potential security
and privacy risk. As shown in Figure 1, the vehicles are able
to communicate with each other and send processed data to
nearby (usually one-hop away) edge servers (i.e., base stations)
located between remote cloud and edge vehicles, with more
powerful compute resources than the on-board computing unit,
at the same time, producing much smaller latency and less
chance in privacy leaking, compared with the cloud solution.

Research on CAV technologies is one of the hottest areas. In
addition, machine learning based real-time applications dom-
inate on CAVs. Unfortunately, there are no edge computing
platforms that support vehicular data analytic and processing.
Many companies, such as Ford [11], General Motors [12] and
Baidu, are working on this. Except for Baidu’s Apollo [2], they
are all proprietary. Though Apollo is open source, it relies
on the in-vehicle only computing solution that puts all the
data processing on the vehicle, which is neither scalable nor
suitable for the future CAVs with plenty of third-party services.

Motivated by the above observations, we propose to build
an edge computing based Open Vehicular Data Analytics Plat-
form (OpenVDAP) for future CAVs which is a full-stack edge
supported platform that includes a series of heterogeneous
hardware and software solutions. The key characteristics of
OpenVDAP are summarized below:

• OpenVDAP supports on-board computing environment by
providing multiple carefully selected heterogeneous com-
puting processors and a security and privacy-preserved
vehicle operating system to ensure a safe and trusted
execution environment for upper applications all while
maintaining effective and optimal resource management
and utilization for lower diverse hardware.

• In addition to the on-board computing, OpenVDAP
is two-tier computing architecture based. In particular,
OpenVDAP provides systematic mechanisms on how to
request, utilize, share and even collaborate with exter-
nal computing entities located on neighboring vehicles,
nearby roadside edge servers, or remote cloud servers.
And a dynamic offloading and scheduling algorithm is
included to allow OpenVDAP to detect each service’s
status, computation overhead, and the optimal offloading
destination so that each service could be completed at the
right time with limited bandwidth consumption.

• The OpenVDAP expected to run on an autonomous vehi-
cle test-bed offers an open and free edge-aware applica-
tion library named libvdap that contains how to access
and deploy edge-computing based vehicle applications,
various commonly used artificial intelligent (AI) models,

as well as the interface of accessing open real field vehicle
data, all of which will enable the researchers, developers
in the community to freely deploy, test and validate their
applications in the real environment.

The remainder of this paper is organized into six sections. In
Section II, we introduce four types of in-vehicle services on the
CAVs. In Section III, we discuss three potential computing ar-
chitectures for CAVs as well as their corresponding challenges
on bandwidth requirement, energy consumption, and security
and privacy. We present our edge-based solution, OpenVDAP,
an open source, full-stack vehicular data analytics platform
in Section IV. Related works are revisited in Section V and
Section VI concludes the paper.

II. IN-VEHICLE SERVICES

In this section, we briefly discuss four types of services that
will be available on CAVs. Conventionally, these services on
current vehicles could be classified into three groups according
to their functionality: real-time diagnostics, advanced driver-
assistant systems, and in-vehicle infotainment. In addition, we
envision a new type of services, third-party applications from
various vendors, will be prevalent on CAVs as the vehicle data
in the future will not be exclusive to the automakers.

A. Real-time Diagnostics

This type of service usually refers to the On-board diag-
nostics (OBD) system, which allows the vehicle to have the
capability of self-diagnosis and reporting. The OBD system
appeared on the vehicle in the 1980s and has evolved from
the early simple ”idiot light” to a modern version that can
provide real-time vehicle data (e.g., the engine’s revolution
from the engine control unit) and a standardized series of
diagnostic trouble codes. Such code is useful for vehicle
maintenance and repair. The device reading the real-time data
is actually an additional device to the vehicle called the OBD
reader. The maintainer can leverage the OBD reader to obtain
information about the fault, e.g., the diagnostic trouble code.
Thus, this usually will not consume any resources of the
vehicle. However, it is not an in-vehicle system. In future
CAVs, this type of service should be built in the vehicle, which
collects the related vehicle data, including real-time data and
historical data, and quietly analyzes it to predict faults. Thus, it
can remind the owner of keeping the vehicle in good condition.

B. Advanced Driver-Assistant Systems

Nowadays, more and more vehicles are equipped with the
ADAS that can detect some objects, complete basic classi-
fication, and alert the driver of unsafe driving behaviors. It
may also slow or stop the vehicle. For example, the steering
wheel will vibrate when the vehicle is close to a traffic line
without illuminating the turn light. The Society of Automotive
Engineers (SAE) International grades autonomous driving at
six levels [13], in which the level 0 means the vehicle is
without any assistant, and the level 5 means the vehicle is in
full control by an autonomous driving system. A vehicle with
ADAS is usually rated the SAE level 1 or level 2 based on



provided functions. Usually, level 3 means the human driver
can safely turn their attention away from driving tasks. As the
level ascends, the autonomous driving system takes over more
controls from human drivers and needs more computation
resources to run computational intensive algorithms.

TABLE I
THE PERFORMANCE OF AUTONOMOUS DRIVING -RELATED ALGORITHMS.

Name Latency (ms)

Lane Detection 13.57
Vehicle Detection (Haar) 269.46
Vehicle Detection (TensorFlow) 13971.98

The most important element of ADAS is the real-time object
detection that is based on either computer vision or deep
learning technology. To obtain intuitional perception on detec-
tion algorithm’s computation complexity, we chose two of the
most representative detection algorithms: Lane Detection and
Vehicle Detection. The former relies on the computer vision
technology. Regarding the latter, the underlying technologies
are Haar-based image processing and TensorFlow-based deep
learning algorithm. We conducted our experiments on the
AWS EC2node with 2.4GHz vCPU. For the vehicle detection,
our initial results, as shown in Table I, show that the latency
of Haar-based algorithm significantly outperforms (around 51x
faster) than the TensorFlow-based. But in the future CAVs,
deep learning based algorithms will dominate since they can
detect multiple types of objects at once. To reduce the system
latency, more powerful hardware is highly required.

C. In-Vehicle Infotainment

In-Vehicle infotainment includes a wide range of services
that provide audio or video entertainment. For example, the
driver uses the radio to listen to music, including cloud
services from the Internet such as Pandora, and the passen-
gers sitting in the backseat can relax by watching online
videos or news using the device embedded on the seat. This
means these services might involve large-scale Internet data
transmission. Most mainstream auto vendors have Internet-
supported infotainment services, e.g., Uconnect for Chrysler,
Blue Link for Honda, and iDrive for BMW. Another trend of
on-board infotainment is the Android-based system that has
been implemented by many auto vendors including Honda,
Hyundai, Audi, and Volvo. For these services, video or audio
data must be downloaded from the Internet and then decoded
locally (i.e., on the vehicle) to make the data smooth or at
higher quality, and eventually delivered to the passengers.It
means these applications not only require compute resources
but also present a high requirement on the network bandwidth.

D. Third-Party Application

The in-vehicle third-party application provided by a vendor
other than the car maker is used to enhance the user experi-
ences or provide other add-on services (e.g., finding a missing
car for law enforcement). The trend of openness of vehicle data

will make it easier for third-party vendors to develop and de-
ploy different kinds of applications on the vehicle. In addition,
with the rapid development of in-vehicle processor processing,
vehicle to vehicle communications and autonomous driving
technologies, future CAVs could be viewed as a sophisticated
computer on wheels with a variety of third-party applications.

Several projects including these types of applications have
been initiated. For example, Kar et al. [14] proposed an
application to enhance the vehicle safety by detecting whether
the driver is registered or not through analyzing his/her op-
eration features (e.g., the time duration of door open and
close). Another example is to leverage the on-board camera
to recognize and track a targeted vehicle, which is a mobile
version for A3 [15] promising to enhance the AMBER alert
system. Generally, the core of such types of applications is
either vision-related or machine learning based data processing
algorithm fed by the same on-board sensor data (e.g., dash
camera). Since the core algorithms are computationally in-
tensive, this type of third-party applications needs powerful
computing hardware as well.

III. PROBLEMS AND CHALLENGES

The latency and accuracy are equally paramount for many
in-vehicle services, especially for the safety-critical ones sup-
porting autonomous driving. Any incorrect or slow decisions
could be disastrous. Due to the large-scale data processing,
limited compute resources, and unreliable network bandwidth
in the moving context,it is not trivial to build an efficient
architecture that can simultaneously satisfy these requirements.
Moreover, security & privacy is another big concern for future
CAVs as the future CAVs are more connected. In this section,
we will discuss three architectures: Cloud-based Solution, In-
vehicle Based Solution and Edge-based Solution, and point
out their corresponding problems and limitations. We end this
section by separately discussing the problems of security &
privacy, as well as isolation for CAVs.

A. Problems and Challenges of Cloud-based Solutions

Cloud computing is often characterized as a powerful server
with conceptually unlimited computational resource. However,
it needs to transmit large-scale data over the Internet. Unfor-
tunately, the network quality (e.g., connectivity, bandwidth)
cannot always be guaranteed, most likely leading to extra
unpredictable data transmission time, and eventually a consid-
erable higher response latency. The biggest challenge of the
cloud-based solution is to provide reliable and fast Internet
transmission.

As previously mentioned, around 4 TB vehicle data will be
generated daily. It will take around 18 days to accomplish data
uploading procedure via current LTE, while keeping a average
upload rate of 20Mbps. Thus, current cellular network fails to
serve as the basic data conduit to stream all vehicle data to
the cloud at the right time. Alternatively, the 5G with a larger
upload bandwidth might be a good candidate. Nevertheless,
there are two big barriers. First is the network coverage and
cost, making 5G inaccessible to many vehicles. Secondly, the



move of vehicle may cause substantial data packet loss, which
was validated under current cellular network via a group of
real-field experiments.

Regarding the experiments, we drove a car in Detroit at the
speed of 35 miles per hour (MPH) and 70 MPH, and deployed
a video uploading procedure on the car. The LTE network was
chosen as the Internet access method. The network protocol
that we used was UDP-based Real-time Transport Protocol, in
which the packet re-transmission mechanism is not supported.
Two sets of 5-minutes videos with different resolution qualities
were used as the test data: 1280×720 (720P) and 1920×1080
(1080P), both encoded into H.264 with 30 frames per second
and one key frame per two seconds. The measured metrics are
packet loss rate on the network level and frame loss rate on
the application level.

0.002 0.006 0.021 
0.070 

0.535 
0.617 

0.012 0.027 

0.390 

0.763 

0.911 
0.980 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

720P 1080P 720P 1080P 720P 1080P

Static 35MPH 70MPH

Lo
ss

 R
at

e

Packet Loss Rate
Frame Loss Rate

Fig. 2. The packet and frame loss rates in different scenarios.

The experimental results are depicted in Figure 2. For
comparison purpose, we also measured the data loss rate in
the static environment. As expected, both the packet loss rate
and frame loss rate increase significantly compared with the
static case. And in the moving context, the data loss rate
increases exponentially with the increase of moving speed.
At the speed of 70MPH, this becomes worse for the higher
resolution data (1080P), with more than 80% data loss rate.
The underlying reasons are straightforward. First, the higher
speed may lead to the vehicle’s stay time within the coverage
of its closest base station pretty short, making the Internet
connection between the vehicle and the cellular base station
highly unreliable.In other words, the vehicle might disconnect
from the Internet during the process of base station change.
Secondly, the higher video resolution contains more pixels,
accordingly requires higher network bandwidth for successful
transmission. For example, the bandwidth of transmitting a
live 1080P video is around 5.8Mbps, while the lower bound
is 3.8Mbps for a 720P video.

Note that the frame loss rate is bigger than the packet loss
rate for all the cases. The primary reason is the difference of
counting policy. Given a frame, the rule of marking a frame
as lost is based on whether its first key frame is lost or not,
rather than on its own status. Therefore, if the first key frame
is lost, all its successive frames will be viewed as lost even

if they might be successfully delivered. While the packet loss
doesn’t consider such interdependent counting policy.

Our preliminary experiments demonstrate the biggest chal-
lenge of using Cloud based two tier computing architecture for
CAVs is the unreliable, or even unpredictable network quality
between the vehicle and Cloud in the moving context.

B. Problems and Challenges of In-vehicle-based Solutions

Due to the unreliable network quality, most of the au-
tonomous vehicles use the in-vehicle-based solution, in which
all the data are processed by a computing unit on the vehicle.
As mentioned in section II-B, many autonomous driving
algorithms are computationally intensive. Thus, a heteroge-
neous platform with varying degree of processing power is
suitable for the real-time data processing dominated context.
Intuitively, such a platform will lead to enormous energy
consumption as the computation tasks increase.

To support our perception, we conducted a CNN based
image recognition, Inception v3, on CPU (Intel i7-6700), 3
types of GPU with different power levels and a DSP-based
processor (Intel Movidius Neural Compute Stick [16]). We
measured the total processing time as shown in in Figure 3.
Here, the GPUs are the Max-Q model and Max-P model of
NVIDIA Jetson TX2, labeled as GPU#1 and GPU#2. The
GPU#3 represents NVIDIA Tesla V100. Obviously, GPU#3
outperforms other kinds of processors inprocessing speed,
while its corresponding max power consumption is consid-
erably bigger than others.

334.5

242.8

114.3

153.9

26.8
1 7.5 15

60

250

0

50

100

150

200

250

0

50

100

150

200

250

300

350

DSP-based GPU#1 GPU#2 CPU-based GPU#3

M
ax

 p
ow

er
 c

on
su

m
pt

io
n 

(W
)

Pr
oc

es
si

ng
 ti

m
e 

(m
s)

Time consumption

Max power consumption

Fig. 3. Performance of running Inception v3 on various processors.

In regards to the real-time performance, the pure in-vehicle
solution that adds different types of processors will result
in high energy consumption, especially for electric vehicles.
For example, the NVIDIA Drive PX2 [17], supporting fully
autonomous driving (level 5), consist 2 CPUs and 2 GPUs, of
which max power consumption is 500 watts. However, it might
be hard to support various additional third-party applications
at the same time, especially for computational intensive appli-
cations, such as A3. Thus, more powerful computing unit, with
higher energy consumption on computing and heat dissipation,
is needed, which will affect the mileage per discharge cycle.
In this case, EV vendors, e.g., GM, BYD, do want to reduce
the energy consumption on computing. which will leave more
energy for the car driving purpose.



Sharing recognition results of ADAS between vehicles
might be a possible approach, which avoids repeating comput-
ing. Another possible approach is to avoid directly executing
computational intensive algorithm, which could be achieved by
developing lightweight algorithms without sacrificing the final
processed results. For example, the Inception v3 recognizing
tens of thousands of objects at once could be tailored and
customizedwith limited interested objects, such as pedestrians
and road blocks, to reduce the computation overhead.

C. Problems and Challenges of Edge-based Solutions

The emerging edge computing refers to various technologies
that allows computation to be performed at the edge of the
network, which is promising for latency-sensitive applications.
The edge computing based solution usually contains a remote
Cloud as well. Therefore, such a solution will enable CAVs
to offload workload to the edge servers and a remote Cloud
server, and where the workload will go depends on its toler-
ance to latency. To avoid redundant computing, the edge based
solution also considers the processed results sharing scheme
through the dedicated short-range communications (DSRC), a
key communication part on CAVs. Although edge computing
is promising in dealing with latency-sensitive applications,
there still exist several challenges as noted below:

• Workload offloading: Migrating the workload from the
cloud to the edge will reduce transmission latency. As
shown in [18], a license plate number recognition pro-
cess is split into three parts, including motion detection,
license plate detection and license plate number recogni-
tion. These three parts are able to be executed on differ-
ent devices concurrently. However, how to dynamically
schedule the sub-workloads to achieve the best end-to-end
latency in terms of network quality and vehicle residual
compute power is an open issue.

• Collaboration: Though the collaboration of vehicles can
save computing power by avoiding executing unnecessary
repeating operations, a collaboration mechanism does not
exist in the literature to the best of our knowledge. To
bridge this gap,we should identify what type of data can
be shared safely, and then know how to share processed
data. Moreover, the synchronization is also an open issue
when sharing data across multiple entities.

D. Security, Isolation and Privacy

Besides the computing architecture, security, privacy and
isolation are essential for future CAVs, due to the openness
of wireless communication, data sharing, and vast third-party
applications. In this section, we will discuss these problems.

• Trusted execution environment: The availability of
diverse on-board wireless communication interfaces
(e.g., DSRC, cellular network, Bluetooth) make the CAV
be more vulnerable to be attacked, increasing the chance
of being remotely controlled by external attackers, which
creates new security risks. On one hand, to overcome
such security concerns, the firewall as a basic can be
used to protect some attacks. On the other hand, the key

and safety-critical applications (e.g., autonomous driving
services) could rely on the trusted execution environment
(TEE) [19], a promising technique to ensure the security
of these key services through running encrypted instruc-
tions in the memory.

• Isolation: As more and more third-party services are
added to the vehicle, the services running on the same
vehicle may form another type of security risk referred
to as an internal attack that is from another other services,
rather than a remote malicious party. Although the above
mentioned TEE could be used as the service isolation
solution, it only targets for a few key services. Therefore,
it is highly desirable to have an effective isolation scheme
for all potential services regardless of their significance
in safety driving. This problem will become more serious
in the context supporting collaboration between vehicles.
For example, the service might be migrated from a
neighbor vehicle which may not be trustworthy.

• Privacy preserved data sharing: In the future the vehicle
data, either raw sensor readings or processed results, will
be shared with other external entities. For example, the
personalized recommendation service needs to frequently
send the location data to a remote server to provide better
service, which has a risk of leaking the most sensitive
personal data (e.g., home address, medical disease) via
simple GPS trace analysis. Therefore, how to protect the
privacy in data sharing is an indispensable part as well.

IV. OpenVDAP: OVERVIEW AND DESIGN

In this section, we will introduce our work, Open Vehic-
ular Data Analytics Platform (OpneVDAP), an edge-based
solution for future CAVs. Considering the constraints of
network (i.e., latency, bandwidth, and connectivity) and on-
board computing resources, OpenVDAP enables the vehicle to
collaborate with surrounding vehicles, offloading workloads to
edge servers, denoted as XEdge, which could be running on
base stations, RSUs, and traffic signal systems, as well as on
remote Cloud. Below is an overview of OpenVDAP followed
by a detailed discussion of each component.

A. Overview of OpenVDAP

OpenVDAP is a full-stack vehicle computing platform for
future CAVs with the capabilities of collaborating with other
edge nodes (i.e., nearby vehicles), XEdge, and a remote Cloud.
It consists of four in-vehicle components: an on-board hetero-
geneous computing/communication unit (VCU), an isolation-
supported and security/privacy-aware vehicle operating system
(EdgeOSv), a driving data integrator (DDI), and an edge-aware
application library (libvdap),

Specifically, the VCU is a heterogeneous computing unit
in terms of processors, storage, and communication modules.
On top of VCU, it is an operating system, EdgeOSv, which is
responsible for providing a security running environment and
energy-efficient and latency-aware resourcemanagement for
upper applications. A library, libvdap, is provided allowing
the third-party developers to build their own applications on



XEdge

(RSU)

3G/4G/5G

Ethernet/

Optical Fiber

VCU

Storage

Communication

DDI

Vehicle Data

libvdap

User

Space

Computing

VCU system resources library Data sharing library

EdgeOSv

Third-Party Applications

Common model library

R
ea

l-
ti

m
e

D
ia

g
n

o
st

ic
s

A
D

A
S

/A
D

S

In
-V

eh
ic

le

In
fo

ta
in

m
en

t

pBEAM

T
ra

ff
ic

In
fo

rm
a

ti
o

n

C
o

ll
ec

to
r

…S
a

fe

S
h

a
re

R
id

e

Weather

Traffic

Social Media

Elastic Management Data Sharing Security

DSRC/5G

OpenVDAP

DSRC/5G

XEdge

(Base Station)

Privacy

OpenVDAP

Cloud Server

OpenVDAP

Fig. 4. The overview of OpenVDAP.

the OpenVDAP. Additionally, OpenVDAP also contains a ser-
vice called DDI that can collect all driving data generated by
the in-vehicle sensors (e.g., OBD and dash camera) and other
external information (e.g., local weather from the Internet). All
data collected by the DDI will be cached on the vehicle and
eventually migrated to a cloud based data server. Note that
these data will be open to the community.

To enable collaboration between vehicles, XEdge and a
remote Cloud, OpenVDAP supports multiple wireless inter-
faces such as DSRC, 5G, 3G/4G/LTE, WiFi and Bluetooth,
in which the DSRC and 5G will be used for vehicle-to-
vehicle and vehicle to RSU-based XEdge communication
due to their higher bandwidth. In addition, the vehicle can
communicate with the base station via traditional cellular
networks (e.g., 3G/4G/LTE). As the communication between
the RSU/base station and cloud, the wired Ethernet or Optical
Fiber will be used.

B. VCU: Heterogeneous Vehicle Computing Unit

Traditionally, vehicles usually contain a computing unit on
board, also known as on-board controller. However, this on-
board controller does not provide any open interface to other
users/developers. In general, it has very limited computing
power, failing to support the state-of-the-art applications, such
as autonomous driving. Hence, we propose a new computing
platform for vehicles called Heterogeneous Vehicle Computing
Unit (VCU), mainly consisting of a multi-level heterogeneous
computing platform (mHEP) and a dynamic scheduling frame-
work (DSF). The architecture of VCU is shown in Figure 5,
in which mHEP relies on heterogeneous hardware devices to
provide the functions of computing, communication and stor-
age, and DSF to effectively utilize and manage the underlying
hardware resources, especially the heterogeneous processors.
The mHEP and DSF are described in detail below.

1) mHEP: Multi-Level Heterogeneous Computing Plat-
form: The first level heterogeneous computing platform
(1stHEP) is the computing platform on the vehicle that con-
tains heterogeneous hardware. This level is the main comput-
ing resource of VCU. In addition to CPU, 1stHEP leverages

ASIC

…

Dynamic Scheduling Framework (DSF)

X86/ARM CPUMemory
and
Disk

Task Partitioner

Original Applications

Task1 Task2 Taskn

GPU

Traditional Vehicle Onboard Controller

FPGA

Task1

Task2 Task4Task3
Wi-Fi/BLE

Task Scheduler

Task5

3G/4G/5G

DSRC

Resources
Profiles

Applications
Profiles

Multi-level Heterogeneous Computing Platform(mHEP)

First level Heterogeneous Computing Platform(1stHEP)

Second level Heterogeneous Computing Platform(2ndHEP)

Cloud
Servers

XEdge
(RSU)

Vehicles

User
Devices

Fig. 5. The overview of VCU.

GPU, FPGA, and ASIC to match and accelerate the services
on the vehicle. Due to the excellence in paralleled computation
that benefits from thousands of hard floating-point units, GPU
is becoming widely used for accelerating complex machine
learning or computer vision based applications [20]. FPGA
can be dynamically reconfigured, so it is suitable for various
algorithms, including but not limited to machine learning [21],
[22]. FPGA will perform the tasks like feature extraction, and
data compression and media coding and decoding, etc. The
1stHEP will use some ASICs to accelerate specific algorithms,
because they have best performance and energy-efficiency.

The storage and communication modules are also deployed
on the 1stHEP. In order to achieve better I/O performance,
the parallelism-supported solid state drive (SSD) [23], [24]
is chosen to store vehicle data and applications. Regarding
the communication module, 1stHEP also contains several
communication modules, such as 3G/4G/5G, Wi-Fi/BLE and
DSRC. The 3G/4G/5G modules enable the vehicles to com-
municate with the cloud server directly. Vehicles are able to
join the Internet of Vehicles through the 5G/DSRC module to
cooperate or data share with other vehicles or XEdge. And
the short-range Bluetooth interface will allow the vehicle to
connect with the passengers’ mobile devices.

Additionally, VCU also contains a second level hetero-
geneous computing platform (2ndHEP) that tries to exploit
all other possible on-board computing resources, such as the
passengers’ mobile devices and vehicle on-board controller to
alleviate the computation burden on the 1stHEP.

2) DSF: Dynamic Scheduling Framework: As mentioned
in Section II, the upper applications on the vehicle are of-
ten computational expensive. Meanwhile, they may depend
on different kinds of computation tasks, such as data pre-
possessing, model training/refining and decision prediction,
each requiring different compute resources. We can assume
the upper computation tasks are heterogeneous as well. Note
that these tasks are not fixed over time, as do the under-
lying available computing resource. To optimally utilize the



hardware resource, the primary goal of DSF is to provide
an effective scheduling framework to dynamically assign each
task/sub-task to the best fit processor. In particular, DSF has
the following two functions:

Computing resources collection: DSF provides dynamic
management of computing resources of mHEP. First, DSF
allows computing resources to join and exit dynamically,
which is used to manage the 2ndHEP and some plug-and-
play computing resources. Second, DSF acquires the real-time
status of all computing resources periodically. For example,
utilization rate and task type at processing. These dynamic
status and static information (computing ability and matched
task type) of computing resources are taken as their profiles.
Third, the profiles are important information for DSF to
dynamic allocate computing resources to applications. And
resources accessed by applications are tightly controlled by
DSF, which will achieve resources isolation and reduce the
interference among the applications. DSF also provides the
access interfaces of all computing resources, which we called
control knob. The upper system or applications can access the
computing resources via the control knob.

Task scheduling: DSF divides the original applications into
some sub-tasks by fine-grained and tries to match the tasks
with the computing resources according to their comput-
ing characteristics. DSF determines the resources type and
amounts which will be allocated to each task according to
the dynamic status of each resource, QoS requirement and
processing priority of each task, and the cost of each schedul-
ing plan. After the tasks are distributed to specified computing
resources, DSF will reduce the results of each task and return
it to the upper operating system or application.

Note that VCU could be viewed as complementary to the
traditional vehicle on-board controller by offering more com-
puting, storage and communication capabilities for modern
vehicle applications. The resources on VCU can be accessed
by users, auto vendors and third-party developers via the open
interfaces. Moreover, the hardware resources could be easily
augmented through the extensible interfaces (USB/PCIe).

The main design question for VCU is how to build an
efficient computing platform for a vehicle that supports a wide
array of applications on vehicle scenario. This is challenging
for various reasons. First, VCU will integrate heterogeneous
hardware (CPU, GPU, FPGA and ASIC) on a single board.
And, the board will contain several communication modules to
make the vehicle connected to cloud, XEdge, other vehicles,
and user devices. Second, VCU needs to provide dynamic
management to resources and collect the real-time status of
resources which will ensure the proper resource allocation
for tasks. Finally, because all resource allocations and task
distributions depend on the scheduling algorithm in VCU, the
algorithm should consider more possible factors to make the
best scheduling plan. Meanwhile, the complexity and overhead
of the scheduling algorithm should be considered.

C. EdgeOSv: An Edge Operating System for Vehicles

EdgeOSvis an edge operating system for the CAVs, con-
sisting of Elastic Management, Data Sharing, Security, and
Privacy. Four fundamental features (DEIR) of service quality
are proposed in [6], [25] for Edge Computing, which also
should be inherited in the design of EdgeOSv. The DEIR
refers to Differentiation, Extensibility, Isolation and Reliabil-
ity. Differentiation is achieved by the Elastic Management
module and Isolation by the Security module. Reliability is
supported together by two modules, Elastic Management and
Security. It is worth noting that the Extensibility property
is two-fold: hardware-level and software-level. The hardware
level of extensibility is achieved by VCU, which can extend
the computational devices using mobile devices, while the
software level of extensibility is achieved by an application
library called libvdap discussed in Section IV-E.

The Elastic Management module is used to manage all
services on the vehicle. The Data Sharing module provides the
data exchange and sharing between different services. And the
Security module is used to provide a trusted execution environ-
ment and isolation scheme for security-sensitive services. The
Privacy module provides some privacy protection schemes for
data sharing between vehicles and XEdge, as well as the cloud.
Before we introduce these four modules, we first introduce the
conception of Polymorphic service, and then introduce how the
Elastic Management module manages these services. Then, we
will introduce Data Sharing, Security, and Privacy modules.

In EdgeOSv, each service offers multiple execution pipelines
in response to various network and computational constraints.
Take the third-party application searching for a kidnapper
using mobile version A3, as an example. The vehicle can
automatically pinpoint the targeted vehicle by recognizing
the license plate number. This service can be accomplished
in three pipelines: 1) all workloads execute on board; 2)
all workloads execute on the edge/cloud server, and 3) the
detecting motion is put on board while recognizing license
plate is deployed on the edge/cloud server. Here, the first one
needs more local computational resources than the second, but
with less bandwidth requirement and low network latency.

EdgeOSv

Kidnapper Searching

Real-time Diagnostics

Pedestrian Alert

…

Polymorphic

Service
Elastic

Management

StorageComputing CommunicationEnergy

Fig. 6. The overview of Elastic Management.

The Elastic Management module is illustrated in Figure 6.
The Elastic Management module can dynamically choose an
optimal pipeline for each Polymorphic Service, considering



priority, required response time and polymorphic requirements
for computational resource and network quality (i.e., latency,
bandwidth and connectivity). Let’s take the kidnapper search-
ing as an example, if the network quality (i.e., remainder
bandwidth by other applications) is enough for uploading
video data the nearby XEdge, the Elastic Management module
might offload all workloads to the XEdge, especially when
there is a lack of on-board computational resources. Once
all of bandwidth are occupied by other services with higher
priority (e.g., autonomous driving services), it can adjust the
pipeline to make part of workload being processed on board,
e.g., detecting motion. If the network quality and computation
resources cannot support this service, the service will be
hung up until meeting requirements again. As the dynamic
adjustment, the service quality and user experience will be
optimized.

To address the security issues of CAVs, EdgeOSvalso con-
tains a Security module, which relies on the trusted execution
environment (TEE) technique. The major benefits of using
TEE can ensure all services running on top be securely isolated
via encryption of their corresponding memory space. For other
non-TEE supported services, the containerization, compared
with the virtualization technology, is a good candidate for iso-
lation and migration due to the light weight of a container [26].
Note that the containerization also can enhance the isolation of
a TEE [27]. Moreover, the Security module monitors services
and prevents them from compromising. Once the service is
compromised , this module will remove the compromised one
and re-install an initialized one without compromising, which
implements the part of function of Reliability.

As mentioned before, the data will be shared between
vehicles as well as services. For example, both of the pedes-
trian detection service for autonomous driving and the mobile
A3 service need to access real-time camera data, and the
mobile A3 service will share the result with a vehicle recorder
service, which records all surrounding vehicle information for
future vehicle searching task. Thus, in our TEE enhanced
EdgeOSv, the Data Sharing module provides a mechanism for
data sharing between different services with a high security,
which will authenticate the service and perform fine grain
access control. To protect the privacy of data sharing between
vehicles, some identity privacy protection schemes will be
provided by the Privacy module. For example, the vehicle can
use the pseudonym, generated and periodically updated by the
Privacy module, for privacy protection in data sharing.

Open Problems: Here are several open problems that need
to be addressed for EdgeOSv. Zhang et al. [18] and Kang et al.
[28] have demonstrated that dividing a workload into several
parts and making them execute on different edge nodes along
the path from the source to the cloud can get a better response
latency and data transmission. However, how to dynamical
divide workload on the edges is still a problem. And in our
EdgeOSv, it requires knowing the network quality to other
edge nodes, which has not been well solved.

D. DDI: Driving Data Integrator

Besides the data collected by sensors embedded in different
components of vehicles, such as engine status, tire pressure,
battery status, vehicle speed, and so on, we think the con-
text data of driving, such as road condition, weather, traffic
information, also plays an important role in decision mak-
ing, e.g., assistant driving, battery cell management, remote
diagnostics, abnormal driving behavior detection and so on.
Therefore, we propose to include a driving data integrator
(a.k.a DDI) in OpenVDAP. The main objective of DDI is to
automatically collect and store relevant context information on
the vehicle and to serve high level services via a set of APIs.

Disk Database

Vehicle data Weather Traffic Social Media

OBD Sensors Vehicle-Specific APIs

In-memory Database

Persist Cache

Natural Language Processing

Upload Download

Store Store Store

Service

Database

Collector

Fig. 7. The design of DDI.

As shown in Figure 7, the DDI consists of three layers.
The bottom layer is the data collector layer. The middle layer
is the database and the top layer is the service layer. The
data of DDI consists of four aspects: vehicle driving data,
weather information, traffic condition, as well as social web
information like some emergencies. OBD reader and on-board
sensors collect the driving data, which includes the location,
speed, acceleration, angular velocity and so on. Noted that,
we used an OBD reader since most of the normal vehicles
only provide an OBD interface to obtain driving data, and
in the future, we will adapter this to more types of vehicles
by multifold devices, such as CAN card for electric vehicles.
Weather, traffic and social data are collected from vehicle-
specific APIs. Environment information gives the weather
conditions and real-time traffic conditions, which can be a
necessary part for detecting the abnormal driving behavior.
Social web information is used to help keep the vehicle away
from troubles. In this way, for a specific person driving through
a period of time, DDI can provide the driving information,
real time weather, real time traffic conditions as well as
emergencies that have happened nearby.

The database layer is composed of two types of database,
in-memory database, e.g., Redis [29], and disk database, e.g.,
MySQL [30]. As the data from the collector layer is time-
space related, disk database is utilized to store it. Meanwhile,
in-memory database caches the frequently used data from disk
database to decrease the response latency of request. For all
the data caches into the in-memory database, a survival time is
set for it. Therefore, all the request for the data would search
the in-memory database first, when it can’t be found in in-
memory database, it would go to the disk database. All the



related data includes location and timestamp. Collected data
are permanently stored in the disk database.

The service layer takes charge of requests from the upper
layer like libvdap via a set of APIs. The requests include
two types: download requests and upload requests. An upload
request is for users to upload their data onto the DDI while a
download request is for the user to download data from DDI.
For a download request, the service layer extracts keywords
like location and timestamp, then it goes to in-memory or disk
database to get data. For an upload request, firstly the data
would be stored in in-memory database, when the survival
time is up and the related charts have been created in disk
database, the data in in-memory database would be written to
disk database for data persistence.

Open Problems: Here are some open problems that need
to addressed in the design and implementation of DDI. First,
what are the right mechanisms to get real-time data, e.g., traffic
condition, social web events? It is hard to obtain real-time data
with an unreliable, limited bandwidth communication channel
available. Second, how to efficiently store and manage time-
space related data on a vehicle is challenging. For example,
how long will these data need to be stored is still unclear.

E. libvdap: Library for Open Vehicular Data Analytics

With the burgeoning of AI-based applications developed
for CAVs, OpenVDAP should support a variety of artificial
intelligence algorithms and models. However, the edge node
is not a good fit for executing large scale models since they
require large footprints on both the storage and computing
power. To support edge intelligence, libvdap is provided
which stores many AI common algorithms and models. These
models are compressed based on the powerful models and
can run smoothly on the edge node. Based on libvdap,
developers can build AI applications more openly and easily.

Natural

Language

Processing

Video 

Processing

Audio 

Processing

RESTful API

Common

model library

VCU system

resource library

Computing

Communication

Storage

Personalized

Driving

Behavior

Model

(pBEAM)

Data

Sharing

DDI

library

Data

sharing

library

Fig. 8. The overview of libvdap.

As shown in Figure 8, libvdap provides a uniform
RESTful API. By calling the API, developers can access
all software and hardware resources. The resources can be
grouped into four categories: Personalized Driving Behavior
Model (pBEAM), Common model library (cBEAM), VCU
system resources library, and Data sharing library. For exam-
ple, developers can use the real-time or history data acquired
by the Data sharing library, leverage the pBEAM or the
AI models provided by the Common model library to build
their application. The application will run on the OpenVDAP
by calling the VCU System resources library. In this way,

developers can create applications that provide value in the
easiest possible way.

Personalized Driving Behavior Model (pBEAM), the core
component of libvdap. pBEAM models personalized driv-
ing behaviors based on driving data. It has been built and
deployed on vehicles. Developers can build third-party ap-
plications on top of pBEAM. By leveraging pBEAM, de-
velopers can acquire the driver’s behavior without a long-
running process of collecting and analyzing data. For example,
the insurance company can evaluate whether the driver is
aggressive or not based on pBEAM.

As shown in Figure 9, pBEAM is pre-trained on the cloud
server and trained again on the XEdge (OpenVDAP) to obtain
the personalized characteristics. On the cloud server, we build
a Common Driving Behavior Model (cBEAM) based on a large
training dataset which includes many drivers’ driving data.
The input data includes the location, speed, acceleration, and
so on. Although cBEAM is powerful, it’s scale is large. So
it requires large footprint on both the storage and compute
power, which is impractical for the XEdge. To save storage
and computing resource, a compression algorithm based on
Deep Compression [31], [32] is used, in which cBEAM is
pruned first to reduce the number of connections by learning
only the important connections, then the number of bits for
representing each weight is reduced via the weight sharing
technique. The compressed cBEAM is then downloaded to
the vehicle. Transfer learning [33] is used to transfer the
compressed cBEAM to pBEAM by learning the personalized
driving data which stores in the DDI. When pBEAM is already
trained, it can provide service for third-party applications.

DDI Data

Third-Party ApplicationsCloud Data

cBEAM

Compressed cBEAM

Compress

Train

pBEAM

Transfer

learning

Cloud Edge

Fig. 9. The building process of pBEAM.

The common model library contains many common algo-
rithms and models that are used frequently in vehicle-based
applications, such as Natural Language Processing, Video
Processing, Audio Processing and so on. The most powerful
models that we leverage today are too large for the OpenVDAP
to run, so the models that are in the Common model library are
compressed based on the powerful models. After compressing,
the models are optimized based on the computing power of
VCU. The VCU system resources library provides developers
with the library of system resource. By calling the library,
users can access the computing, storage and communication



resources. The data sharing library provides to the user the
uniform data interface. The data comes from two sources: Data
Sharing module of EdgeOSvand DDI.

Open Problems: Several open problems that need to be
addressed for libvdap include: Firstly, although we com-
pressed the large-scale artificial intelligence models in the
cloud, they are still too large to leverage on the XEdge.
Can we design a model which has a smaller size based on
personalized dataset? Secondly, how can we consider more
context information when build pBEAM, such as driver’s
age group? At last, the driver may show different behavioral
characteristics due to the different kinds of weather. How can
we take the environment into consideration when building the
pBEAM?

V. RELATED WORK

The concept of connected vehicles has been proposed since
1996, and there are many researchers working on this area.
Feng et al. [34] proposed a real-time adaptive signal control
approach using connected vehicles. Wang et al. [35] proposed
a real-time path planning approach to relieve traffic congestion
in urban scenarios. All of the works are promising to improve
the safety and convenience of driving. All autonomous vehicle
are connected vehicle, which allows the vehicle connects to
the Internet and share internet access with other devices both
inside as well as outside the vehicle [36]. To improve the user
experience, auto vendors have also developed infotainment
systems, such as BMW’s iDrive, Audi’s Audi connect, General
Motors’ OnStar Chrysler’s Uconnect, Honda’s Blue Link, and
so on. Beside auto vendors, Google presented the Android
Auto [37] in 2015, a mobile app that allows enhanced use of
an Android device within a vehicle equipped with a compatible
head unit. By this app, the Android device can broadcast
apps onto the vehicle’s display, such as the map app. Apple
provided a similar system, CarPlay [38], in 2014. Baidu and
Alibaba also presented similar systems by modifying their
existing systems, DuerOS [39] and AliOS [40]. All four of
these systems provide a hands-free operation through voice
commands to minimize driving distraction.

Now, there are many companies, including traditional
auto makers and technology companies, working on the au-
tonomous vehicle. Here, we only list some of them. Ford
declares that a fully autonomous vehicle (SAE Level 4) will
be possible in commercial operation in 2021 [11]. General
Motors has prepared the first production-ready car with no
steering wheel or pedals, which means it is an autonomous
vehicle, and General Motors is asking DOT permission to
safely deploy autonomous vehicles in 2019 [12]. Renault-
Nissan alliance plans to build an autonomous vehicle on the
road by 2020 [41]–[43]. Bosch and Daimler have entered into
a development agreement to bring fully automated (SAE Level
4) and driverless (SAE Level 5) driving to urban roads by the
beginning of the next decade [44]. The Volkswagen Group
introduce its first SAE Level 5 fully autonomous concept
vehicle, Sedric in 2017 [45]. The BMW has been testing
autonomous vehicles on public roads for several years, and

the goal of reaching the consumer market is 2021 [46]. The
Tesla has built its partial autonomous vehicles on the road.

Besides traditional auto vendors, many technology com-
panies are also working on the autonomous vehicle, but
most of them only focus on software platform or algorithms,
and collaboration with traditional vendors for autonomous
vehicle commercial productions. Google started to research
autonomous vehicle in 2009, and in 2016, it became a new
company, Waymo [1]. In 2015, the world’s first fully self-
driving ride on public roads is done by Waymo without
a physical steering wheel, pedals and driver. In 2017, its
technology has been added to the Chrysler Pacifica Hybrid
minivan, a mass-production platform. Baidu started to research
autonomous vehicle in 2013 and had its first road testing in
2015. In 2017, its platform Apollo is open [2], including
an open autonomous driving software platform, suggested
hardware platform, and some real data for simulations. Using
these data, many researchers can train, improve and verify
their algorithms.Apple also studies autonomous driving and,
at the end of 2017, it published the first paper [47] related to
autonomous driving, in which the authors proposed VoxelNet
to detect the 3D object from the lidar’s data. The Nvidia, as
a chip maker, also studies autonomous driving, and it also
provides computing units for autonomous driving, such as
Nvidia Drive PX [17]. There are also some startup companies
working on autonomous driving, such as Drive.ai, Zoox,
Pony.ai and NIO.

VI. CONCLUSIONS

In this paper, we proposed a security, privacy-aware,
and isolation-supported computing architecture for the future
CAVs that is envisioned as a sophisticated computer on wheels
with a variety of computation-intensive yet latency-sensitive
services running on top. In particular, we identified three
possible computing architectures for these on-board services
and pointed out their challenges and limitations in ensuring
these services be accomplished at the right time. Inspired by
the promising of edge computing in dealing with latency-
sensitive applications, we therefore proposed an edge com-
puting based platform (i.e., OpenVDAP), which is a full-
stack hardware/software platform that consists of an on-board
heterogeneous computing units, an isolation-supported and
security/privacy-aware vehicle-dedicated operating system, as
well as an edge-aware application library. In addition to
supporting on-board computing, OpenVDAP is also featured
as a two-tier computing architecture via proposing a series
of systematic mechanisms that enable CAVs to dynamically
detect service status and to identify the optimal offloading
destination (e.g., in-vehicle, XEdge, or cloud) so that each
service could be finished at the right time. Most importantly,
unlike the proprietary platforms, OpenVDAP offers an open
and free edge-aware library that contains how to access and
deploy edge-computing based vehicle applications and various
common used AI models, which will enable the researchers
and developers in the community to deploy, test, and validate
their applications in the real environment.



REFERENCES

[1] (2017, Dec.) Waymo. [Online]. Available: https://waymo.com/
[2] (2017, Dec.) Apollo. [Online]. Available: http://apollo.auto/index.html
[3] (2017, Dec.) The world’s first self-driving ubers are on the road in the

steel city. [Online]. Available: https://www.uber.com/cities/pittsburgh/
self-driving-ubers/

[4] S. Liu, J. Tang, Z. Zhang, and J. L. Gaudiot, “Computer architectures
for autonomous driving,” Computer, vol. 50, no. 8, pp. 18–25, 2017.

[5] P. Nelson. (2016) Just one autonomous car will use 4,000 gb of data/day.
[Online]. Available: http://www.networkworld.com/article/3147892/
internet/one-autonomous-car-will-use-4000-gb-of-dataday.html

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, Oct 2016.

[7] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, Jan 2017.

[8] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proceedings of the First Edition of
the MCC Workshop on Mobile Cloud Computing, ser. MCC ’12. New
York, NY, USA: ACM, 2012, pp. 13–16.

[9] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha,
W. Hu, and B. Amos, “Edge analytics in the internet of things,” IEEE
Pervasive Computing, vol. 14, no. 2, pp. 24–31, Apr 2015.

[10] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, Oct 2009.

[11] (2018, Jan.) Ford will have a fully autonomous vehicle in operation
by 2021. [Online]. Available: https://corporate.ford.com/innovation/
autonomous-2021.html

[12] (2018, Jan.) Meet the cruise av: the first production-
ready car with no steering wheel or pedals. [On-
line]. Available: http://media.gm.com/media/us/en/gm/home.detail.html/
content/Pages/news/us/en/2018/jan/0112-cruise-av.html

[13] S. international. (2016) Taxonomy and definitions for terms related
to driving automation systems for on-road motor vehicles. [Online].
Available: http://standards.sae.org/j3016\ 201609/

[14] G. Kar, S. Jain, M. Gruteser, J. Chen, F. Bai, and R. Govindan,
“Predriveid: Pre-trip driver identification from in-vehicle data,” in
Proceedings of the Second ACM/IEEE Symposium on Edge Computing,
ser. SEC ’17. New York, NY, USA: ACM, 2017, pp. 2:1–2:12.
[Online]. Available: http://doi.acm.org/10.1145/3132211.3134462

[15] Q. Zhang, Q. Zhang, W. Shi, and H. Zhong, “Enhancing amber
alert using collaborative edges: Poster,” in Proceedings of the Second
ACM/IEEE Symposium on Edge Computing, ser. SEC ’17, 2017, pp.
27:1–27:2.

[16] (2018, Jan.) Intel movidius neural compute stick. [Online]. Available:
https://developer.movidius.com/

[17] (2018, Jan.) Autonomous car development platform from
nvidia drive px2. [Online]. Available: https://www.nvidia.com/en-us/
self-driving-cars/drive-px/

[18] Q. Zhang, Q. Zhang, W. Shi, and H. Zhong, “Firework: Data processing
and sharing for hybrid cloud-edge analytics,” Technical Report MIST-
TR-2017-002, 2017.

[19] Z. Ning, F. Zhang, W. Shi, and W. Shi, “Position paper: Challenges
towards securing hardware-assisted execution environments,” in
Proceedings of the Hardware and Architectural Support for Security and
Privacy, ser. HASP ’17. New York, NY, USA: ACM, 2017, pp. 6:1–6:8.
[Online]. Available: http://doi.acm.org/10.1145/3092627.3092633

[20] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew,
“Deep learning with cots hpc systems,” in International Conference on
Machine Learning, 2013, pp. 1337–1345.

[21] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A dynam-
ically configurable coprocessor for convolutional neural networks,” in
International Symposium on Computer Architecture, 2010, pp. 247–257.

[22] G. J. Garcı́a, C. A. Jara, J. Pomares, A. Alabdo, L. M. Poggi, and
F. Torres, “A survey on fpga-based sensor systems: towards intelligent
and reconfigurable low-power sensors for computer vision, control and
signal processing,” Sensors, vol. 14, no. 4, pp. 6247–6278, 2014.

[23] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse,
and R. Panigrahy, “Design tradeoffs for ssd performance.” in Usenix
Technical Conference, Boston, 2008, pp. 57–70.

[24] D. Nellans, D. Nellans, and P. Bonnet, “Linux block io: introducing
multi-queue ssd access on multi-core systems,” in International Systems
and Storage Conference, 2013, p. 22.

[25] J. Cao, L. Xu, R. Abdallah, and W. Shi, “EdgeOS H: A home operating
system for internet of everything,” in 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), June 2017, pp.
1756–1764.

[26] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs containerization
to support paas,” in 2014 IEEE International Conference on Cloud
Engineering, March 2014, pp. 610–614.

[27] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche,
D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer, “SCONE: Secure
linux containers with intel SGX,” in 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16). Savannah,
GA: USENIX Association, 2016, pp. 689–703.

[28] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” in Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’17, 2017, pp. 615–629.

[29] (2018, Jan.) Redis. [Online]. Available: https://redis.io/
[30] (2018, Jan.) Mysql. [Online]. Available: https://www.mysql.com/
[31] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing

deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[32] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: efficient inference engine on compressed deep neural
network,” in Computer Architecture (ISCA), 2016 ACM/IEEE 43rd
Annual International Symposium on. IEEE, 2016, pp. 243–254.

[33] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2010.

[34] “A real-time adaptive signal control in a connected vehicle environment,”
Transportation Research Part C: Emerging Technologies, vol. 55, pp.
460 – 473, 2015, engineering and Applied Sciences Optimization (OPT-
i) - Professor Matthew G. Karlaftis Memorial Issue.

[35] M. Wang, H. Shan, R. Lu, R. Zhang, X. Shen, and F. Bai, “Real-time
path planning based on hybrid-vanet-enhanced transportation system,”
IEEE Transactions on Vehicular Technology, vol. 64, no. 5, pp. 1664–
1678, May 2015.

[36] N. Lu, N. Cheng, N. Zhang, X. Shen, and J. W. Mark, “Connected
vehicles: Solutions and challenges,” IEEE Internet of Things Journal,
vol. 1, no. 4, pp. 289–299, Aug 2014.

[37] (2018, Jan.) Android auto. [Online]. Available: https://www.android.
com/auto/

[38] (2018, Jan.) Apple carplay - the ultimate copilot. [Online]. Available:
https://www.apple.com/ios/carplay/

[39] (2018, Jan.) Dueros for smart automobile unit solution. [Online].
Available: https://dueros.baidu.com/en/html/2017/jjfasj 0608/10.html

[40] (2018, Jan.) Ford and alibaba explore strategic collaboration to
reimagine vehicle ownership experience, expand mobility services.
[Online]. Available: https://media.ford.com/content/fordmedia/fna/us/en/
news/2017/12/07/ford-and-alibaba.html

[41] (2018, Jan.) Renault-nissan plans driverless ride-
hailing and ride-sharing services. [Online]. Avail-
able: http://www.autonews.com/article/20170622/COPY01/306229943/
renault-nissan-plans-driverless-ride-hailing-and-ride-sharing-services

[42] (2018, Jan.) Autonomous vehicles. [Online]. Available: https://group.
renault.com/en/innovation-2/autonomous-vehicle/

[43] (2018, Jan.) Nissan’s self-driving car. [Online]. Available: https:
//www.nissanusa.com/blog/autonomous-drive-car

[44] (2018, Jan.) Future mobility: Bosch and daimler join forces to
work on fully automated, driverless system. [Online]. Available:
http://media.daimler.com/marsMediaSite/doc/en/16390030

[45] (2018, Jan.) Individual mobility redefined: Autonomous driving at the
touch of a button. [Online]. Available: https://www.volkswagenag.com/
en/news/2017/03/Autonomous driving.html

[46] (2018, Jan.) Autonomous driving – 5 steps to the self-driving
car. [Online]. Available: https://www.bmw.com/en/automotive-life/
autonomous-driving.html

[47] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud
based 3d object detection,” CoRR, vol. abs/1711.06396, 2017. [Online].
Available: http://arxiv.org/abs/1711.06396


